Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:46:01
%S 1,2,80,13440,5913600,5381376000,8782405632000,23361198981120000,
%T 94566133475573760000,553211880832106496000000,
%U 4492080472356704747520000000,49017582114356362204938240000000,699971072593008852286518067200000000
%N a(n) = (3*n)!/3^n.
%H Vincenzo Librandi, <a href="/A210277/b210277.txt">Table of n, a(n) for n = 0..100</a>
%H D. Bevan, D. Levin, P. Nugent, J. Pantone and L. Pudwell, <a href="http://arxiv.org/abs/1510.08036">Pattern avoidance in forests of binary shrubs</a>, arXiv preprint arXiv:1510:08036 [math.CO], 2015-2016.
%F E.g.f.: 1/(1-x^3/3).
%F a(n) = Product_{i=1..n} (2*binomial(3i,3)). - _James Mahoney_, Apr 04 2012
%F From _Amiram Eldar_, Jan 18 2021: (Start)
%F Sum_{n>=0} 1/a(n) = exp(3^(1/3))/3 + (2/3)*exp(-3^(1/3)/2)*cos(3^(5/6)/2).
%F Sum_{n>=0} (-1)^n/a(n) = exp(-3^(1/3))/3 + (2/3)*exp(3^(1/3)/2)*cos(3^(5/6)/2). (End)
%t Table[(3 n)!/3^n, {n, 0, 15}] (* _Vincenzo Librandi_, Feb 15 2013 *)
%o (Magma)[Factorial(3*n)/3^n: n in [0..15]]; // _Vincenzo Librandi_, Feb 15 2013
%Y Cf. A210278, A000680, A067630, A084939, A084940, A084941, A084942, A084943, A084944, A087127, A001147, A132101.
%K nonn,easy
%O 0,2
%A _Mohammad K. Azarian_, Mar 20 2012