login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210215
Triangle of coefficients of polynomials u(n,x) jointly generated with A210216; see the Formula section.
3
1, 2, 1, 2, 4, 1, 2, 5, 7, 1, 2, 5, 12, 11, 1, 2, 5, 13, 26, 16, 1, 2, 5, 13, 33, 51, 22, 1, 2, 5, 13, 34, 79, 92, 29, 1, 2, 5, 13, 34, 88, 176, 155, 37, 1, 2, 5, 13, 34, 89, 221, 365, 247, 46, 1, 2, 5, 13, 34, 89, 232, 530, 709, 376, 56, 1, 2, 5, 13, 34, 89, 233, 596
OFFSET
1,2
COMMENTS
Limiting row: odd-indexed Fibonacci numbers, (A122367, A001519)
n-th row sum: -1+2^n
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=xu(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...1
2...4...1
2...5...7....1
2...5...12...11...1
First three polynomials u(n,x): 1, 2 + x, 2 + 4x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210215 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210216 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
CROSSREFS
Sequence in context: A152036 A035015 A212829 * A203647 A376826 A114791
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 19 2012
STATUS
approved