login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152036
Triangular product sequence based 2^n times the Fibonacci version and 4 replaced with m: t(m,n)=2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}].
0
1, 1, 2, 1, 2, 4, 1, 2, 4, 14, 1, 2, 4, 16, 48, 1, 2, 4, 18, 56, 202, 1, 2, 4, 20, 64, 248, 880, 1, 2, 4, 22, 72, 298, 1100, 4286, 1, 2, 4, 24, 80, 352, 1344, 5504, 21760, 1, 2, 4, 26, 88, 410, 1612, 6914, 28336, 118898, 1, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472
OFFSET
0,3
COMMENTS
The row sums are: {1, 3, 7, 21, 71, 283, 1219, 5785, 29071, 156291, 880507,...}. A sequence of sequences with the row numbers m instead of n: and the ratio increases with each row: at (1+Sqrt[5]) for m=4.
FORMULA
t(m,n)=2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}].
EXAMPLE
1;
1, 2;
1, 2, 4;
1, 2, 4, 14;
1, 2, 4, 16, 48;
1, 2, 4, 18, 56, 202;
1, 2, 4, 20, 64, 248, 880;
1, 2, 4, 22, 72, 298, 1100, 4286;
1, 2, 4, 24, 80, 352, 1344, 5504, 21760;
1, 2, 4, 26, 88, 410, 1612, 6914, 28336, 118898;
1, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472, 675904;
MATHEMATICA
f[n_, m_] = 2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[Table[FullSimplify[ExpandAll[f[n, m]]], {n, 0, m}], {m, 0, 10}]
CROSSREFS
Cf. A103435 (row 4), A083694 (row 5)
Sequence in context: A123937 A138882 A074634 * A035015 A212829 A210215
KEYWORD
nonn,uned,tabl
AUTHOR
STATUS
approved