login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152037
Convolution of A007318 (Pascal's sequence) with itself .
3
1, 2, 3, 4, 7, 8, 9, 14, 20, 20, 21, 32, 43, 46, 51, 62, 71, 82, 107, 136, 145, 136, 144, 200, 280, 316, 296, 294, 359, 456, 535, 576, 591, 650, 820, 1020, 1078, 990, 963, 1160, 1541, 1950, 2225, 2244, 2034, 1892, 2211, 3024, 3866, 4260, 4207, 4066, 4150, 4630, 5617
OFFSET
0,2
LINKS
FORMULA
G.f.: [Sum_{n>=0} x^(n*(n+1)/2) * (1+x)^n ]^2. [Paul D. Hanna, Apr 18 2012]
G.f.: [Sum_{n>=0} (1+x)^n*x^n * Product_{k=1..n} (1 - (1+x)*x^(2*k-1)) / (1 - (1+x)*x^(2*k)) ]^2. [Paul D. Hanna, Apr 18 2012]
MAPLE
g:= proc(n) option remember; floor((sqrt(1+8*n)-1)/2) end:
b:= proc(n) b(n):= (t-> binomial(t, n-t*(t+1)/2))(g(n)) end:
a:= n-> add(b(j)*b(n-j), j=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Jun 04 2020
MATHEMATICA
g[n_] := g[n] = Floor[(Sqrt[1 + 8*n] - 1)/2];
b[n_] := b[n] = Function[t, Binomial[t, n - t*(t + 1)/2]][g[n]];
a[n_] := Sum[b[j]*b[n - j], {j, 0, n}];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
PROG
(PARI) {a(n)=local(A=sum(m=0, (sqrt(8*n+1)+1)\2, x^(m*(m+1)/2)*(1+x+x*O(x^n))^m)); polcoeff(A^2, n)} /* Paul D. Hanna, Apr 18 2012 */
for(n=0, 66, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Nov 20 2008
EXTENSIONS
More terms (and corrected term) from L. Edson Jeffery, Apr 23 2011
STATUS
approved