login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182153
G.f.: [Sum_{n>=0} x^(n^2) * (1+x+x^2)^n ]^2.
2
1, 2, 3, 4, 5, 8, 13, 16, 17, 18, 24, 38, 53, 62, 64, 68, 83, 108, 135, 158, 181, 214, 264, 326, 383, 412, 408, 402, 457, 620, 871, 1124, 1285, 1326, 1292, 1266, 1322, 1524, 1920, 2504, 3165, 3696, 3916, 3818, 3644, 3772, 4492, 5796, 7363, 8748, 9643, 10014, 10031
OFFSET
0,2
COMMENTS
Equals the self-convolution of the flattened triangle of trinomial coefficients (A027907).
LINKS
FORMULA
G.f.: [Sum_{n>=0} (1+x+x^2)^n*x^n * Product_{k=1..n} (1 - (1+x+x^2)*x^(4*k-3))/(1 - (1+x+x^2)*x^(4*k-1)) ]^2.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 16*x^7 + 17*x^8 + 18*x^9 +...
such that
A(x)^(1/2) = 1 + x*(1+x+x^2) + x^4*(1+x+x^2)^2 + x^9*(1+x+x^2)^3 + x^16*(1+x+x^2)^4 +...
PROG
(PARI) {a(n)=local(A=sum(m=0, sqrtint(n+1), x^(m^2)*(1+x+x^2+x*O(x^n))^m)); polcoeff(A^2, n)}
for(n=0, 66, print1(a(n), ", "))
CROSSREFS
Sequence in context: A373895 A347333 A050024 * A230771 A065490 A214452
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2012
STATUS
approved