OFFSET
0,2
COMMENTS
Equals the self-convolution of the flattened triangle of trinomial coefficients (A027907).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1024
FORMULA
G.f.: [Sum_{n>=0} (1+x+x^2)^n*x^n * Product_{k=1..n} (1 - (1+x+x^2)*x^(4*k-3))/(1 - (1+x+x^2)*x^(4*k-1)) ]^2.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 16*x^7 + 17*x^8 + 18*x^9 +...
such that
A(x)^(1/2) = 1 + x*(1+x+x^2) + x^4*(1+x+x^2)^2 + x^9*(1+x+x^2)^3 + x^16*(1+x+x^2)^4 +...
PROG
(PARI) {a(n)=local(A=sum(m=0, sqrtint(n+1), x^(m^2)*(1+x+x^2+x*O(x^n))^m)); polcoeff(A^2, n)}
for(n=0, 66, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2012
STATUS
approved