login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065490
Exponents in expansion of constant A065463 as Product_{n>1} zeta(n)^(-a(n)).
3
0, 1, -1, 1, -2, 3, -4, 5, -8, 13, -18, 25, -40, 62, -90, 135, -210, 324, -492, 750, -1164, 1809, -2786, 4305, -6710, 10460, -16264, 25350, -39650, 62057, -97108, 152145, -238818, 375165, -589520, 927200, -1459960, 2300346, -3626200
OFFSET
1,5
COMMENTS
The sequence 1,1,1,1,2,3,4,5,8,13,18,25,40,62,90,135,... appears in Lehrer-Segal on p. 285, in the following context: Let V=Sum_{k>=1} V_k be the graded vector space H_*(PC^oo)[1], which has Poincaré series [or Poincare series] p(t)=t/(1-t^2). This sequence gives the dimensions of the free graded Lie algebra L on V.
Inverse Euler transform of F(1-n) where F() is Fibonacci numbers A000045. - Michael Somos, Jul 21 2003
FORMULA
a(n) = (1/n)*Sum_{d|n} (-1)^d*mu(n/d)*(Fibonacci(d-1)+Fibonacci(d+1)-1). - Vladeta Jovovic, May 03 2003
a(n) ~ (-1)^n * phi^n / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 09 2019
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^#*MoebiusMu[n/#]*(Fibonacci[#+1] + Fibonacci[# -1]-1)&]/n; Array[a, 40] (* Jean-François Alcover, Dec 03 2015, adapted from PARI *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, (-1)^d*moebius(n/d)*(fibonacci(d+1)+fibonacci(d-1)-1))/n)
CROSSREFS
Cf. A065463.
Sequence in context: A050024 A182153 A230771 * A214452 A282500 A222106
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 19 2001
EXTENSIONS
More terms and formula from Christian G. Bower, Aug 23 2002
STATUS
approved