|
|
A065492
|
|
Exponents in expansion of constant A065480 as a product zeta(n)^(-a(n)).
|
|
1
|
|
|
0, 1, -1, 2, -4, 8, -14, 25, -48, 92, -168, 310, -590, 1117, -2092, 3945, -7500, 14264, -27102, 51627, -98694, 188934, -361936, 694565, -1335466, 2570965, -4954744, 9561045, -18473140, 35730392, -69176558, 134063535, -260062168, 504918960
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Inverse Euler transform of A077925 shifted by two places: 1, 0, 1, -1, 3, -5,... [From R. J. Mathar, Jul 26 2010]
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
nmax = 40; s = {}; For[j = 1, j <= nmax, j++, AppendTo[s, j*(1 - (-2)^(j - 1))/3 - Sum[s[[d]]*(1 - (-2)^(j - d - 1))/3, {d, j - 1}]]]; Table[Sum[If[Divisible[j, d], MoebiusMu[j/d], 0]*s[[d]], {d, 1, j}]/j, {j, nmax}] (* Vaclav Kotesovec, Jun 13 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|