login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065492
Exponents in expansion of constant A065480 as a product zeta(n)^(-a(n)).
1
0, 1, -1, 2, -4, 8, -14, 25, -48, 92, -168, 310, -590, 1117, -2092, 3945, -7500, 14264, -27102, 51627, -98694, 188934, -361936, 694565, -1335466, 2570965, -4954744, 9561045, -18473140, 35730392, -69176558, 134063535, -260062168, 504918960
OFFSET
0,4
COMMENTS
Inverse Euler transform of A077925 shifted by two places: 1, 0, 1, -1, 3, -5,... [From R. J. Mathar, Jul 26 2010]
FORMULA
a(n) ~ -(-1)^n * 2^(n+1) / n. - Vaclav Kotesovec, Jun 13 2020
MATHEMATICA
nmax = 40; s = {}; For[j = 1, j <= nmax, j++, AppendTo[s, j*(1 - (-2)^(j - 1))/3 - Sum[s[[d]]*(1 - (-2)^(j - d - 1))/3, {d, j - 1}]]]; Table[Sum[If[Divisible[j, d], MoebiusMu[j/d], 0]*s[[d]], {d, 1, j}]/j, {j, nmax}] (* Vaclav Kotesovec, Jun 13 2020 *)
CROSSREFS
Cf. A065480.
Sequence in context: A164150 A164149 A164148 * A298880 A208483 A284735
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 19 2001
EXTENSIONS
More terms from R. J. Mathar, Jul 26 2010
STATUS
approved