OFFSET
0,2
COMMENTS
All terms are even.
The subsets that are counted for a(n) are also counted for a(n+1) the use of which eases the computation of the first terms as double counting can be avoided. - David A. Corneth, Apr 05 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 0..10000 (first 501 terms from Robert Israel)
EXAMPLE
The first nontrivial case is when n = 4 and a(4) = 14. There are 2^4 = 16 subsets of {1, 2, 3, 4}. The subsets {2, 3, 4} and {1, 2, 3, 4} do not meet the condition that the product of the entries are less than or equal to n^2 + n = 4^2 + 4 = 20. There are 14 subsets of {1, 2, 3, 4} whose entries have a product less than 20.
MAPLE
P:= proc(n, p) option remember;
if n=1 and p>1 then return 0 fi;
if p mod n = 0 then procname(n-1, p) + procname(n-1, p/n)
else procname(n-1, p)
fi
end proc:
P(1, 1):= 2:
P(0, 0):= 0:
[seq(add(P(n, p), p=1..n^2+n), n=0..100)]; # Robert Israel, Mar 06 2018
MATHEMATICA
P[n_, p_] := P[n, p] = If[n == 1 && p > 1, 0, If[Mod[p, n] == 0, P[n-1, p] + P[n-1, p/n], P[n-1, p]]]; P[1, 1] = 2; P[0, 0] = 0;
a[n_] := Sum[P[n, p], {p, 1, n^2 + n}];
a /@ Range[0, 100] (* Jean-François Alcover, Oct 26 2020, after Robert Israel *)
PROG
(SageMath) [len([S for S in Subsets( n) if mul(S)<=n^2+n]) for n in range(15)]
(PARI)
first(n) = {
n--;
maxn = n;
u = n^2 + n;
res = vector(n);
process(1, 1);
for(i = 2, #res,
res[i]+=res[i-1]
);
return(concat(0, 2*res))
}
process(p, n) = {
my(i, s);
s = (sqrtint(4*p+1)>>1);
while(s*(s+1) < p,
s++
);
res[max(n, s)]++;
for(i = n+1, min(maxn, u \ p),
process(p*i, i)
);
} \\ David A. Corneth, Apr 05 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Adrienne Crookshank, Feb 27 2018
EXTENSIONS
More terms from Robert Israel, Mar 06 2018
STATUS
approved