login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182152
G.f.: [Sum_{n>=0} x^(n*(n+1)/2) * (1+x)^n ]^3.
2
1, 3, 6, 10, 18, 27, 37, 54, 81, 106, 132, 180, 245, 306, 381, 493, 612, 729, 910, 1173, 1434, 1662, 1950, 2379, 2925, 3522, 4146, 4831, 5628, 6600, 7852, 9363, 10836, 12169, 13947, 16734, 20040, 22875, 25185, 28003, 32403, 38622, 45658, 51810, 56643, 62263, 71310
OFFSET
0,2
COMMENTS
Equals the self-convolution cube of the flattened Pascal's triangle (A007318).
LINKS
FORMULA
G.f.: [Sum_{n>=0} (1+x)^n*x^n * Product_{k=1..n} (1 - (1+x)*x^(2*k-1)) / (1 - (1+x)*x^(2*k)) ]^3.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 10*x^3 + 18*x^4 + 27*x^5 + 37*x^6 + 54*x^7 + 81*x^8 + 106*x^9 + 132*x^10 +...
such that
A(x)^(1/3) = 1 + x*(1+x) + x^3*(1+x)^2 + x^6*(1+x)^3 + x^10*(1+x)^4 +...
PROG
(PARI) {a(n)=local(A=sum(m=0, (sqrt(8*n+1)+1)\2, x^(m*(m+1)/2)*(1+x+x*O(x^n))^m)); polcoeff(A^3, n)}
for(n=0, 66, print1(a(n), ", "))
CROSSREFS
Sequence in context: A242525 A266617 A291608 * A170803 A182908 A076251
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2012
STATUS
approved