OFFSET
0,2
COMMENTS
Equals the self-convolution cube of the flattened Pascal's triangle (A007318).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1035
FORMULA
G.f.: [Sum_{n>=0} (1+x)^n*x^n * Product_{k=1..n} (1 - (1+x)*x^(2*k-1)) / (1 - (1+x)*x^(2*k)) ]^3.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 10*x^3 + 18*x^4 + 27*x^5 + 37*x^6 + 54*x^7 + 81*x^8 + 106*x^9 + 132*x^10 +...
such that
A(x)^(1/3) = 1 + x*(1+x) + x^3*(1+x)^2 + x^6*(1+x)^3 + x^10*(1+x)^4 +...
PROG
(PARI) {a(n)=local(A=sum(m=0, (sqrt(8*n+1)+1)\2, x^(m*(m+1)/2)*(1+x+x*O(x^n))^m)); polcoeff(A^3, n)}
for(n=0, 66, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2012
STATUS
approved