The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182152 G.f.: [Sum_{n>=0} x^(n*(n+1)/2) * (1+x)^n ]^3. 2
 1, 3, 6, 10, 18, 27, 37, 54, 81, 106, 132, 180, 245, 306, 381, 493, 612, 729, 910, 1173, 1434, 1662, 1950, 2379, 2925, 3522, 4146, 4831, 5628, 6600, 7852, 9363, 10836, 12169, 13947, 16734, 20040, 22875, 25185, 28003, 32403, 38622, 45658, 51810, 56643, 62263, 71310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equals the self-convolution cube of the flattened Pascal's triangle (A007318). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..1035 FORMULA G.f.: [Sum_{n>=0} (1+x)^n*x^n * Product_{k=1..n} (1 - (1+x)*x^(2*k-1)) / (1 - (1+x)*x^(2*k)) ]^3. EXAMPLE G.f.: A(x) = 1 + 3*x + 6*x^2 + 10*x^3 + 18*x^4 + 27*x^5 + 37*x^6 + 54*x^7 + 81*x^8 + 106*x^9 + 132*x^10 +... such that A(x)^(1/3) = 1 + x*(1+x) + x^3*(1+x)^2 + x^6*(1+x)^3 + x^10*(1+x)^4 +... PROG (PARI) {a(n)=local(A=sum(m=0, (sqrt(8*n+1)+1)\2, x^(m*(m+1)/2)*(1+x+x*O(x^n))^m)); polcoeff(A^3, n)} for(n=0, 66, print1(a(n), ", ")) CROSSREFS Cf. A152037, A007318. Sequence in context: A242525 A266617 A291608 * A170803 A182908 A076251 Adjacent sequences:  A182149 A182150 A182151 * A182153 A182154 A182155 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 01:37 EST 2021. Contains 349426 sequences. (Running on oeis4.)