login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182152 G.f.: [Sum_{n>=0} x^(n*(n+1)/2) * (1+x)^n ]^3. 2
1, 3, 6, 10, 18, 27, 37, 54, 81, 106, 132, 180, 245, 306, 381, 493, 612, 729, 910, 1173, 1434, 1662, 1950, 2379, 2925, 3522, 4146, 4831, 5628, 6600, 7852, 9363, 10836, 12169, 13947, 16734, 20040, 22875, 25185, 28003, 32403, 38622, 45658, 51810, 56643, 62263, 71310 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equals the self-convolution cube of the flattened Pascal's triangle (A007318).

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1035

FORMULA

G.f.: [Sum_{n>=0} (1+x)^n*x^n * Product_{k=1..n} (1 - (1+x)*x^(2*k-1)) / (1 - (1+x)*x^(2*k)) ]^3.

EXAMPLE

G.f.: A(x) = 1 + 3*x + 6*x^2 + 10*x^3 + 18*x^4 + 27*x^5 + 37*x^6 + 54*x^7 + 81*x^8 + 106*x^9 + 132*x^10 +...

such that

A(x)^(1/3) = 1 + x*(1+x) + x^3*(1+x)^2 + x^6*(1+x)^3 + x^10*(1+x)^4 +...

PROG

(PARI) {a(n)=local(A=sum(m=0, (sqrt(8*n+1)+1)\2, x^(m*(m+1)/2)*(1+x+x*O(x^n))^m)); polcoeff(A^3, n)}

for(n=0, 66, print1(a(n), ", "))

CROSSREFS

Cf. A152037, A007318.

Sequence in context: A242525 A266617 A291608 * A170803 A182908 A076251

Adjacent sequences:  A182149 A182150 A182151 * A182153 A182154 A182155

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 18 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 01:37 EST 2021. Contains 349426 sequences. (Running on oeis4.)