The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210216 Triangle of coefficients of polynomials v(n,x) jointly generated with A210215; see the Formula section. 3
 1, 1, 2, 1, 3, 3, 1, 3, 7, 4, 1, 3, 8, 14, 5, 1, 3, 8, 20, 25, 6, 1, 3, 8, 21, 46, 41, 7, 1, 3, 8, 21, 54, 97, 63, 8, 1, 3, 8, 21, 55, 133, 189, 92, 9, 1, 3, 8, 21, 55, 143, 309, 344, 129, 10, 1, 3, 8, 21, 55, 144, 364, 674, 591, 175, 11, 1, 3, 8, 21, 55, 144, 376, 894 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Limiting row: even-indexed Fibonacci numbers, A001906. n-th row sum:  -1+2*n For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+v(n-1,x)+1, v(n,x)=xu(n-1,x)+x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 1...2 1...3...3 1...3...7...4 1...3...8...14...5 First three polynomials v(n,x): 1, 1 + 2x , 1 + 3x + 3x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A210215 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A210216 *) Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A137470 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *) CROSSREFS Cf. A210215, A208510. Sequence in context: A291302 A278493 A180975 * A195915 A219158 A049834 Adjacent sequences:  A210213 A210214 A210215 * A210217 A210218 A210219 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 15:04 EST 2020. Contains 332019 sequences. (Running on oeis4.)