login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195915 Table with T(n,1) = n, otherwise T(n,k) = xor(T(n-1,k-1), T(n-1,k)). 1
1, 2, 1, 3, 3, 1, 4, 0, 2, 1, 5, 4, 2, 3, 1, 6, 1, 6, 1, 2, 1, 7, 7, 7, 7, 3, 3, 1, 8, 0, 0, 0, 4, 0, 2, 1, 9, 8, 0, 0, 4, 4, 2, 3, 1, 10, 1, 8, 0, 4, 0, 6, 1, 2, 1, 11, 11, 9, 8, 4, 4, 6, 7, 3, 3, 1, 12, 0, 2, 1, 12, 0, 2, 1, 4, 0, 2, 1, 13, 12, 2, 3 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

We take T(n,n+1) = 0 in the calculation (so T(n,n) = 1).

It appears that, if 2^j > n, T(2^j+n,2^j+k) = T(n,k). This is equivalent to the periodicity conjecture in A195916.

LINKS

Table of n, a(n) for n=1..82.

EXAMPLE

The table starts:

1

2, 1

3, 3, 1

4, 0, 2, 1

5, 4, 2, 3, 1

6, 1, 6, 1, 2, 1

PROG

(PARI) anrow(n)=local(r, v); r=v=[1]; for(k=2, n, v=vector(#v+1, j, if(j==1, k, bitxor(v[j-1], if(j==k, 0, v[j])))); r=concat(r, v)); r

CROSSREFS

Row reversals of A195916. For xor, see A003987.

Sequence in context: A278493 A180975 A210216 * A219158 A049834 A134625

Adjacent sequences:  A195912 A195913 A195914 * A195916 A195917 A195918

KEYWORD

nonn,easy,tabl

AUTHOR

Franklin T. Adams-Watters, Sep 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 15:30 EST 2020. Contains 332019 sequences. (Running on oeis4.)