login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210213
Triangle of coefficients of polynomials u(n,x) jointly generated with A210214; see the Formula section.
3
1, 2, 1, 4, 3, 1, 7, 9, 4, 1, 12, 21, 16, 5, 1, 20, 46, 46, 25, 6, 1, 33, 94, 121, 85, 36, 7, 1, 54, 185, 289, 260, 141, 49, 8, 1, 88, 353, 653, 708, 491, 217, 64, 9, 1, 143, 659, 1409, 1800, 1499, 847, 316, 81, 10, 1, 232, 1209, 2939, 4320, 4229, 2863, 1366
OFFSET
1,2
COMMENTS
Row sums: even-indexed Fibonacci numbers
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....1
4....3....1
7....9....4....1
12...21...16...5...1
First three polynomials u(n,x): 1, 2 + x, 4 + 3x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210213 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210214 *)
CROSSREFS
Sequence in context: A133805 A131254 A210229 * A305695 A211235 A134626
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 19 2012
STATUS
approved