login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210229
Triangle of coefficients of polynomials u(n,x) jointly generated with A210230; see the Formula section.
3
1, 2, 1, 4, 3, 1, 7, 8, 4, 1, 12, 18, 13, 5, 1, 20, 38, 35, 19, 6, 1, 33, 76, 86, 59, 26, 7, 1, 54, 147, 197, 164, 91, 34, 8, 1, 88, 277, 430, 420, 281, 132, 43, 9, 1, 143, 512, 904, 1014, 792, 447, 183, 53, 10, 1, 232, 932, 1846, 2338, 2087, 1371, 673, 245, 64
OFFSET
1,2
COMMENTS
Column 1: -1+F(n+1), where F=A000045 (Fibonacci numbers)
Alternating row sums: 1,1,2,2,3,3,4,4,5,5,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....1
4....3....1
7....8....4....1
12...18...13...5...1
First three polynomials u(n,x): 1, 2 + x, 4 + 3x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210229 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210230 *)
CROSSREFS
Sequence in context: A345123 A133805 A131254 * A210213 A305695 A211235
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 20 2012
STATUS
approved