login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114791
Consider the array T where the element at T(r,c) is the number of n-almost primes less than or equal to 2^m. Sequence read by successive columns beginning at r=c.
0
1, 1, 2, 1, 2, 4, 1, 2, 6, 6, 1, 2, 7, 10, 11, 1, 2, 7, 13, 22, 18, 1, 2, 7, 14, 30, 42, 31, 1, 2, 7, 15, 34, 60, 82, 54, 1, 2, 7, 15, 36, 71, 125, 157, 97, 1, 2, 7, 15, 37, 77, 152, 256, 304, 172, 1, 2, 7, 15, 37, 81, 168, 325, 513, 589, 309, 1, 2, 7, 15, 37, 83, 177, 367, 669, 1049
OFFSET
1,3
COMMENTS
Eventually each column reads 1,2,7,15,37,84,187,421,914,... = A052130.
FORMULA
Each column sums to 2^n-1.
EXAMPLE
1 2 4 6 11 18 31 54 97 172 309 564 1028 1900 3512 6542
..1 2 6 10 22 42 82 157 304 589 1124 2186 4192 8110 15658
....1 2 7 13 30 60 125 256 513 1049 2082 4214 8401 16771
......1 2 7 14 34 71 152 325 669 1405 2866 5931 12139
........1 2 7 15 36 77 168 367 770 1643 3410 7150
..........1 2 7 15 37 81 177 392 831 1790 3757
............1 2 7 15 37 83 182 406 867 1880
..............1 2 7 15 37 84 185 414 887
................1 2 7 15 37 84 186 418
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 2^k], {k, 12}, {n, k, 1, -1}] // Flatten
CROSSREFS
First row is A007053, Cf. A052130.
Sequence in context: A210215 A203647 A376826 * A129994 A208755 A226441
KEYWORD
nonn,tabl
AUTHOR
Robert G. Wilson v, Feb 21 2006
STATUS
approved