login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114793
a(1) = a(2) = 1; for n>2, a(n) = a(n-2)^3 + a(n-1)^2.
7
1, 1, 2, 5, 33, 1214, 1509733, 2281082919633, 5203342727366374356990526, 27074775538448408469117040958804384971249439965813, 733043470457364306745565389055274337169526356099299839341244874661931850021760795731279812250002545
OFFSET
1,3
FORMULA
a(n) ~ c^(2^n), where c = 1.117568080436159210016482629050645172893788101196409851633874670767953... . - Vaclav Kotesovec, Dec 18 2014
EXAMPLE
a(4) = sum of the cube of a(2) plus the square of a(3) = cube of 1 + the square of 2, resulting in 1 + 4 = 5. The next term is a(3)^3 + a(4)^2 = (2^3) + 5^2 = 33 = a(5).
MATHEMATICA
Nest[Append[#, Last[#]^2+#[[-2]]^3]&, {1, 1}, 10] (* Harvey P. Dale, Apr 17 2011 *)
nxt[{a_, b_}]:={b, a^3+b^2}; NestList[nxt, {1, 1}, 10][[All, 1]] (* Harvey P. Dale, Dec 04 2018 *)
PROG
(Python)
a, b = 0, 1
for k in range(8):
print(b, end=", ")
a, b = b, a*a*a + b*b
CROSSREFS
Sequence in context: A197974 A208985 A333738 * A254429 A298945 A027303
KEYWORD
nonn
AUTHOR
Stephen T. Rowe (EbolaPox(AT)gmail.com), Feb 18 2006
STATUS
approved