OFFSET
1,2
COMMENTS
For integers a, b, denote by a<+>b the least c>=a, such that D(a,c)=b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>2. Thus this sequence is a Hamming analog of odd numbers 1,3,5,...
A Hamming analog of nonnegative integers is A000225 and a Hamming analog of the triangular numbers is A000975.
All terms are odious (A000069).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
MAPLE
read("transforms");
Hamming := proc(a, b)
XORnos(a, b) ;
wt(%) ;
end proc:
Dplus := proc(a, b)
for c from a to 1000000 do
if Hamming(a, c)=b then
return c;
end if;
end do:
return -1 ;
end proc:
A206853 := proc(n)
option remember;
if n = 1 then
1;
else
Dplus(procname(n-1), 2) ;
end if;
end proc: # R. J. Mathar, Apr 05 2012
MATHEMATICA
myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]]; t = {1}; Do[If[myHammingDistance[t[[-1]], n] == 2, AppendTo[t, n]], {n, 2, 2042}]; t (* T. D. Noe, Mar 07 2012 *)
t={x=1}; Do[i=x+1; While[Count[IntegerDigits[BitXor[x, i], 2], 1]!=2, i++]; AppendTo[t, x=i], {n, 53}]; t (* Jayanta Basu, May 26 2013 *)
PROG
(PARI) next_A206853(n)={my(b=binary(n)); until(norml2(binary(n)-b)==2, n++>=2^#b & b=concat(0, b)); n}
print1(n=1); for(i=1, 99, print1(", "n=next_A206853(n))) \\ M. F. Hasler, Apr 07 2012
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Feb 13 2012
STATUS
approved