login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206853
a(1)=1, for n>1, a(n) is the least number > a(n-1) such that the Hamming distance D(a(n-1), a(n)) = 2.
21
1, 2, 4, 7, 11, 13, 14, 22, 26, 28, 31, 47, 55, 59, 61, 62, 94, 110, 118, 122, 124, 127, 191, 223, 239, 247, 251, 253, 254, 382, 446, 478, 494, 502, 506, 508, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1534, 1790, 1918, 1982, 2014, 2030, 2038, 2042
OFFSET
1,2
COMMENTS
For integers a, b, denote by a<+>b the least c>=a, such that D(a,c)=b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>2. Thus this sequence is a Hamming analog of odd numbers 1,3,5,...
A Hamming analog of nonnegative integers is A000225 and a Hamming analog of the triangular numbers is A000975.
All terms are odious (A000069).
LINKS
MAPLE
read("transforms");
Hamming := proc(a, b)
XORnos(a, b) ;
wt(%) ;
end proc:
Dplus := proc(a, b)
for c from a to 1000000 do
if Hamming(a, c)=b then
return c;
end if;
end do:
return -1 ;
end proc:
A206853 := proc(n)
option remember;
if n = 1 then
1;
else
Dplus(procname(n-1), 2) ;
end if;
end proc: # R. J. Mathar, Apr 05 2012
MATHEMATICA
myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]]; t = {1}; Do[If[myHammingDistance[t[[-1]], n] == 2, AppendTo[t, n]], {n, 2, 2042}]; t (* T. D. Noe, Mar 07 2012 *)
t={x=1}; Do[i=x+1; While[Count[IntegerDigits[BitXor[x, i], 2], 1]!=2, i++]; AppendTo[t, x=i], {n, 53}]; t (* Jayanta Basu, May 26 2013 *)
PROG
(PARI) next_A206853(n)={my(b=binary(n)); until(norml2(binary(n)-b)==2, n++>=2^#b & b=concat(0, b)); n}
print1(n=1); for(i=1, 99, print1(", "n=next_A206853(n))) \\ M. F. Hasler, Apr 07 2012
CROSSREFS
Cf. A182187 (n<+>2), A207063 (starting from 0).
Sequence in context: A249594 A127575 A240106 * A229618 A087285 A107791
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Feb 13 2012
STATUS
approved