The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206852 Numbers N such that N/2 is a square, N/3 is a cube, and N/5 is a fifth power. 13
 30233088000000, 32462531054272512000000, 6224724715037147546112000000, 34856377305871210027941888000000, 28156757354736328125000000000000000, 6683747269421867033919422988288000000, 681433858470444619689081338982912000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The terms must be of the form N = 2^a*3^b*5^c*m^(2*3*5) where gcd(m, 2*3*5) = 1 and a-1, b-1 and c-1 must be a multiple of 2, 3 and 5, respectively, and a, b, c must be a multiple of the two other prime factors, respectively. This gives (a, b, c) == (3*5, 2*5, 2*3) [mod 2*3*5], whence N = 2^15*3^10*5^6*n^30. - M. F. Hasler, Jul 22 2022 LINKS Georg Fischer, Table of n, a(n) for n = 1..1000 Shyam Sunder Gupta, Do you know, as of Feb 15 2012. Michael Penn, a sunny number puzzle!, YouTube video, 2021. Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1). FORMULA a(n) = 30233088000000 * n^30 = 2^15 * 3^10 * 5^6 * n^30. - Charles R Greathouse IV, Apr 25 2012 MATHEMATICA Table[30233088000000 * n^30, {n, 1, 1000}] (* Georg Fischer, Feb 07 2021 *) PROG (PARI) {is_A206852(n)=(n=divrem(n, 3^10*5^6<<15))[2]==0 && ispower(n[1], 30)} \\ replacing obsolete PARI code from 2012. - M. F. Hasler, Jul 22 2022 (PARI) a(n)=30233088000000*n^30 \\ Charles R Greathouse IV, Apr 25 2012 (Python) def A206852(n): return 30233088000000*n**30 # M. F. Hasler, Jul 24 2022 (Python) def is_A206852(n): for p in (2, 3, 5): for e in range(n): if n % p: break n //= p if e % 30 != 30//p: return False return is_A122971(n) # M. F. Hasler, Jul 24 2022 CROSSREFS Cf. A000290 (squares), A000578 (cubes), A000584 (5th powers), A122971 (30th powers). Sequence in context: A297357 A080124 A121843 * A171264 A172574 A229069 Adjacent sequences: A206849 A206850 A206851 * A206853 A206854 A206855 KEYWORD nonn,easy AUTHOR M. F. Hasler, Feb 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)