login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206852
Numbers N such that N/2 is a square, N/3 is a cube, and N/5 is a fifth power.
13
30233088000000, 32462531054272512000000, 6224724715037147546112000000, 34856377305871210027941888000000, 28156757354736328125000000000000000, 6683747269421867033919422988288000000, 681433858470444619689081338982912000000
OFFSET
1,1
COMMENTS
The terms must be of the form N = 2^a*3^b*5^c*m^(2*3*5) where gcd(m, 2*3*5) = 1 and a-1, b-1 and c-1 must be a multiple of 2, 3 and 5, respectively, and a, b, c must be a multiple of the two other prime factors, respectively. This gives (a, b, c) == (3*5, 2*5, 2*3) [mod 2*3*5], whence N = 2^15*3^10*5^6*n^30. - M. F. Hasler, Jul 22 2022
LINKS
Shyam Sunder Gupta, Do you know, as of Feb 15 2012.
Michael Penn, a sunny number puzzle!, YouTube video, 2021.
Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
FORMULA
a(n) = 30233088000000 * n^30 = 2^15 * 3^10 * 5^6 * n^30. - Charles R Greathouse IV, Apr 25 2012
MATHEMATICA
Table[30233088000000 * n^30, {n, 1, 1000}] (* Georg Fischer, Feb 07 2021 *)
PROG
(PARI) {is_A206852(n)=(n=divrem(n, 3^10*5^6<<15))[2]==0 && ispower(n[1], 30)} \\ replacing obsolete PARI code from 2012. - M. F. Hasler, Jul 22 2022
(PARI) a(n)=30233088000000*n^30 \\ Charles R Greathouse IV, Apr 25 2012
(Python) def A206852(n): return 30233088000000*n**30 # M. F. Hasler, Jul 24 2022
(Python)
def is_A206852(n):
for p in (2, 3, 5):
for e in range(n):
if n % p: break
n //= p
if e % 30 != 30//p: return False
return is_A122971(n) # M. F. Hasler, Jul 24 2022
CROSSREFS
Cf. A000290 (squares), A000578 (cubes), A000584 (5th powers), A122971 (30th powers).
Sequence in context: A297357 A080124 A121843 * A171264 A172574 A229069
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Feb 15 2012
STATUS
approved