login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200524 Least m>0 such that n = 4^x-y^2 (mod m) has no solution, or 0 if no such m exists. 10
0, 0, 3, 0, 0, 3, 4, 0, 3, 16, 4, 3, 0, 20, 3, 0, 0, 3, 4, 56, 3, 16, 4, 3, 80, 16, 3, 40, 0, 3, 4, 0, 3, 20, 4, 3, 64, 16, 3, 0, 63, 3, 4, 56, 3, 28, 4, 3, 0, 20, 3, 40, 63, 3, 4, 0, 3, 16, 4, 3, 0, 28, 3, 0, 0, 3, 4, 40, 3, 16, 4, 3, 85, 16, 3, 56, 63, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

  If such an m>0 exists, this proves that n is not in A051215, i.e., not of the form 4^x-y^2. On the other hand, if there are integers x, y such that n=4^x-y^2, then we know that a(n)=0.

Some of the larger values include a(303)= 1387, a(423)=1687, a(447)=2047, a(519)>30000.

LINKS

M. F. Hasler, Table of n, a(n) for n = 0..518

EXAMPLE

See A200507 for motivation and examples.

PROG

(PARI) A200524(n, b=4, p=3)={ my( x=0, qr, bx, seen ); for( m=3, 9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m, y, y^2+n)%m, , 8); seen=0; bx=1; until( bittest(seen+=1<<bx, bx=bx*b%m), for(i=1, #qr, qr[i]<bx & next; qr[i]>bx & break; next(3))); return(m))}

CROSSREFS

Cf. A051204-A051221, A200522, A200523, A200505-A200520.

Sequence in context: A216194 A279168 A111787 * A308223 A222328 A222402

Adjacent sequences:  A200521 A200522 A200523 * A200525 A200526 A200527

KEYWORD

nonn

AUTHOR

M. F. Hasler, Nov 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 17:20 EDT 2019. Contains 325198 sequences. (Running on oeis4.)