login
A279168
T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
7
0, 1, 1, 0, 0, 0, 3, 0, 0, 3, 3, 8, 16, 8, 3, 9, 24, 117, 117, 24, 9, 15, 88, 483, 864, 483, 88, 15, 31, 284, 2001, 5628, 5628, 2001, 284, 31, 57, 772, 7709, 34764, 57248, 34764, 7709, 772, 57, 108, 2000, 28139, 203226, 557163, 557163, 203226, 28139, 2000, 108, 199
OFFSET
1,7
COMMENTS
Table starts
...0....1......0........3..........3............9.............15
...1....0......0........8.........24...........88............284
...0....0.....16......117........483.........2001...........7709
...3....8....117......864.......5628........34764.........203226
...3...24....483.....5628......57248.......557163........5159514
...9...88...2001....34764.....557163......8426362......121098448
..15..284...7709...203226....5159514....121098448.....2708250146
..31..772..28139..1143396...45915548...1686053298....58954576326
..57.2000..99519..6219491..396958758..22825771952..1248383818884
.108.5008.343156.33013384.3354431037.302051174586.25842455526113
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
k=2: [order 11]
k=3: [order 33] for n>36
k=4: [order 84] for n>88
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1. .0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..0..0..0. .1..1..0..1. .0..1..0..0. .1..0..0..1. .0..1..1..1
..0..0..1..0. .0..0..1..1. .0..1..1..0. .1..0..1..1. .0..1..0..0
..1..0..1..1. .1..0..1..0. .1..0..1..0. .1..0..0..0. .1..0..1..1
CROSSREFS
Column 1 is A105423(n-2).
Sequence in context: A282499 A216194 A365462 * A111787 A200524 A308223
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 07 2016
STATUS
approved