|
|
A200523
|
|
Least m>0 such that n = 3^x-y^2 (mod m) has no solution, or 0 if no such m exists.
|
|
4
|
|
|
0, 0, 0, 0, 8, 0, 8, 9, 0, 0, 12, 0, 8, 9, 8, 20, 9, 0, 0, 12, 8, 80, 8, 0, 45, 9, 0, 0, 8, 80, 8, 9, 0, 45, 9, 20, 8, 21, 8, 80, 9, 80, 28, 9, 8, 0, 8, 0, 91, 9, 20, 36, 8, 0, 8, 12, 0, 80, 9, 80, 8, 9, 8, 28, 15, 0, 91, 9, 8, 45, 8, 0, 0, 15, 0, 20, 8, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
If such an m>0 exists, this proves that n is not in A051214, i.e., not of the form 3^x-y^2. On the other hand, if there are integers x, y such that n=3^x-y^2, then we know that a(n)=0.
|
|
LINKS
|
|
|
EXAMPLE
|
See A200507 for developed examples.
Some of the larger values include a(107)=17732, a(146)=1924, a(347)=4400, a(416)=2044, a(458)>30000.
|
|
PROG
|
(PARI) A200523(n, b=3, p=3)={ my( x=0, qr, bx, seen ); for( m=3, 9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m, y, y^2+n)%m, , 8); seen=0; bx=1; until( bittest(seen+=1<<bx, bx=bx*b%m), for(i=1, #qr, qr[i]<bx & next; qr[i]>bx & break; next(3))); return(m))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|