login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200513
Least m>0 such that n = y^2 - 3^x (mod m) has no solution, or 0 if no such m exists.
1
0, 0, 8, 0, 8, 9, 0, 0, 0, 0, 8, 9, 8, 0, 9, 0, 0, 12, 8, 0, 8, 28, 0, 9, 0, 20, 8, 0, 8, 9, 20, 80, 9, 0, 8, 0, 8, 0, 9, 63, 0, 9, 8, 80, 8, 20, 0, 9, 0, 28, 8, 63, 8, 12, 0, 0, 9, 36, 8, 9, 8, 0, 12, 0, 532, 9, 8, 80, 8, 108, 20, 15, 0, 0, 8, 63, 8, 9, 0
OFFSET
0,3
COMMENTS
To prove that an integer n is in A051205, it is sufficient to find integers x,y such that y^2 - 3^x = n. In that case, a(n)=0. To prove that n is *not* in A051205, it is sufficient to find a modulus m for which the (finite) set of all possible values of 3^x and y^2 (mod m) allows us to deduce that y^2 - 3^x can never equal n. The present sequence lists the smallest such m>0, if it exists.
EXAMPLE
See A200512.
PROG
(PARI) A200513(n, b=3, p=3)={ my( x=0, qr, bx, seen ); for( m=3, 9e9, while( x^p < m, issquare(b^x+n) & return(0); x++); qr=vecsort(vector(m, y, y^2-n)%m, , 8); seen=0; bx=1; until( bittest(seen+=1<<bx, bx=bx*b%m), for(i=1, #qr, qr[i]<bx & next; qr[i]>bx & break; next(3))); return(m))}
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 18 2011
STATUS
approved