login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200510
Least m>0 such that n = 10^x-y^2 (mod m) has no solution, or 0 if no such m exists.
1
0, 0, 3, 5, 9, 3, 0, 9, 3, 0, 0, 3, 35, 5, 3, 11, 9, 3, 5, 0, 3, 16, 9, 3, 11, 9, 3, 20, 5, 3, 16, 9, 3, 5, 9, 3, 0, 11, 3, 0, 9, 3, 20, 5, 3, 32, 11, 3, 5, 9, 3, 0, 9, 3, 28, 37, 3, 11, 5, 3, 200, 9, 3, 5, 0, 3, 16, 9, 3, 16, 9, 3, 35, 5, 3, 0, 9, 3, 5, 9
OFFSET
0,3
COMMENTS
If such an m>0 exists, this proves that n is not in A051221, i.e., not of the form 10^x-y^2. On the other hand, if n is in A051221, i.e., there are integers x, y such that n=10^x-y^2, then we know that a(n)=0.
LINKS
FORMULA
a(111)=11111.
EXAMPLE
See A200507.
PROG
(PARI) A200510(n, b=10, p=3)={ my( x=0, qr, bx, seen ); for( m=3, 9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m, i, i^2+n)%m, , 8); seen=0; bx=1; until( bittest(seen+=1<<bx, bx=bx*b%m), for(i=1, #qr, qr[i]<bx & next; qr[i]>bx & break; next(3))); return(m))}
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 18 2011
STATUS
approved