|
|
A200525
|
|
Zeisel numbers with p(0)=4.
|
|
0
|
|
|
385, 2585, 7315, 8911, 27001, 39905, 48391, 87283, 192211, 196285, 319705, 410089, 425585, 441091, 624605, 679855, 1310185, 1899163, 2460439, 2586971, 2777041, 6654005, 7042411, 7501261, 8291459, 9516637, 10484585, 11141671, 12527281, 13015891, 13788319
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Pick any integers A and B and consider the linear recurrence relation given by p(0) = 4, p(i + 1) = A*p(i) + B. If for some n > 2, p(1), p(2), ..., p(n) are distinct primes, then the product of these primes is called a Zeisel number.
|
|
LINKS
|
|
|
EXAMPLE
|
a=2, b=-3 => p(1) = (4*2)+(-3) = 5; p(2) = (5*2)+(-3) = (7); p(3) = (7*2)+(-3) = 11 => 5*7*11 = 385.
a=2, b=5 => p(1) = (4*2)+5 = 13; p(2) = (13*2)+5 = 31; p(3) = (31*2)+5 = 67 => 13*31*67 = 27001.
|
|
PROG
|
(Rexx)
n0=4
do m=1 to 53
a=2*m
do b=(1-(4*a)) to 999
n1=(n0*a)+b
n2=(n1*a)+b
n3=(n2*a)+b
z=n1*n2*n3
say n0 a b
lineout("zeisel_4.txt", z||" = "||n1||"*"||n2||"*"||n3||" "||a||" "||b||" n0="||n0)
end
end
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|