login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225711
Composite squarefree numbers n such that p(i)+1 divides n-1, where p(i) are the prime factors of n.
5
385, 2737, 6061, 6721, 17641, 24769, 25201, 31521, 34561, 49105, 66385, 76609, 79401, 113221, 136081, 180481, 194833, 199801, 254881, 268801, 311905, 321937, 328321, 362881, 436645, 469201, 506521, 545905, 547561, 558145, 628705, 642505, 649153, 778261, 884305
OFFSET
1,1
LINKS
Qi-Yang Zheng, There are infinitely many (-1,1)-Carmichael numbers, arXiv:2207.08641 [math.NT], 2022.
EXAMPLE
Prime factors of 24769 are 17, 31 and 47. We have that (24769-1)/(17+1) = 1376, (24769-1)/(31+1) = 774 and (24769-1)/(47+1) = 516.
MAPLE
with(numtheory); A225711:=proc(i, j) local c, d, n, ok, p, t;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
if not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A225711(10^9, -1);
MATHEMATICA
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 1, p + 1]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 13 2013
STATUS
approved