login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225714
Composite squarefree numbers n such that p(i)+4 divides n-4, where p(i) are the prime factors of n.
3
1054, 9541, 91039, 371074, 985054, 1043959, 1063003, 1107754, 1162498, 1357339, 1786054, 4018018, 5368549, 5820154, 8725747, 9994954, 12402709, 17138503, 17914054, 20855839, 23116009, 25077199, 26545054, 29247229, 30308359, 31424419, 33892759, 44141629
OFFSET
1,1
EXAMPLE
Prime factors of 1043959 are 7, 293 and 509. We have that (1043959-4)/(7+4) = 94905, (1043959-4)/(293+4) = 3515 and (1043959-4)/(509+4) = 2035.
MAPLE
with(numtheory); A225714:=proc(i, j) local c, d, n, ok, p, t;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
if not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A225714(10^9, -4);
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 13 2013
EXTENSIONS
a(20)-a(28) from Donovan Johnson, Nov 15 2013
STATUS
approved