login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222328
T(n,k)=Number of nXk 0..1 arrays with exactly floor(nXk/2) elements unequal to at least one king-move neighbor, with new values introduced in row major 0..1 order
8
1, 0, 0, 0, 0, 0, 3, 0, 0, 3, 4, 7, 4, 7, 4, 4, 0, 19, 19, 0, 4, 5, 32, 0, 52, 0, 32, 5, 20, 0, 84, 165, 165, 84, 0, 20, 27, 168, 212, 835, 674, 835, 212, 168, 27, 48, 0, 1366, 3307, 3770, 3770, 3307, 1366, 0, 48, 63, 948, 1302, 14419, 15100, 38238, 15100, 14419, 1302, 948
OFFSET
1,7
COMMENTS
Table starts
...1....0......0.......3.........4...........4............5.............20
...0....0......0.......7.........0..........32............0............168
...0....0......4......19.........0..........84..........212...........1366
...3....7.....19......52.......165.........835.........3307..........14419
...4....0......0.....165.......674........3770........15100.........172590
...4...32.....84.....835......3770.......38238.......255304........2542901
...5....0....212....3307.....15100......255304......2284728.......37484794
..20..168...1366...14419....172590.....2542901.....37484794......620488671
..27....0...1302...66213....759758....20957580....318665044....10589084713
..48..948..11152..302731...6657106...204487984...5848569858...186293287066
..63....0..21206.1350601..30994294..1778907664..53774145449..3354992092851
.175.5279.132937.6283864.298933498.17205177010.993959061317.61359735913289
LINKS
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0....0..0..0..1....0..1..1..1....0..0..0..0....0..1..1..1
..1..0..0..0....0..0..0..0....0..1..1..1....0..0..0..0....1..1..1..1
..1..0..0..0....0..0..0..0....1..1..1..1....0..0..0..0....0..1..1..1
..0..0..0..0....1..0..0..0....0..1..1..1....0..1..0..1....1..1..1..1
CROSSREFS
Column 1 is A222283
Sequence in context: A111787 A200524 A308223 * A222402 A222522 A091921
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 15 2013
STATUS
approved