OFFSET
0,1
COMMENTS
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Bruno Berselli, Illustration of initial terms: An origin of A195605.
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
G.f.: (2+3*x+4*x^2-x^3)/((1+x)*(1-x)^3).
a(n) = a(-n-2) = 2*a(n-1)-2*a(n-3)+a(n-4).
Sum_{n>=0} 1/a(n) = 1/2 + Pi^2/16 - cot(Pi/(2*sqrt(2)))*Pi/(4*sqrt(2)). - Amiram Eldar, Mar 06 2023
MATHEMATICA
CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{2, 0, -2, 1}, {2, 7, 18, 31}, 50] (* Harvey P. Dale, Jan 21 2017 *)
PROG
(Magma) [(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
(PARI) for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Sep 21 2011 - based on remarks and sequences by Omar E. Pol.
STATUS
approved