

A195607


Numerator of floor(Phi*10^n)/10^n, where phi = (sqrt(5) + 1)/2 = A001622 is the Golden Ratio.


1



1, 8, 161, 809, 809, 161803, 1618033, 16180339, 80901699, 404508497, 16180339887, 80901699437, 1618033988749, 8090169943749, 161803398874989, 809016994374947, 4045084971874737, 40450849718747371, 25281781074217107, 8090169943749474241
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Numerator of the decimal fraction of phi = 1.61803... truncated to a given number of decimal places.
The corresponding sequence for 1/phi = 0.61803... = phi1 (also called the Golden Ratio) has a very similar behavior, because for both, the truncated decimal expansion can be simplified by the same factors 2^k*5^m.


LINKS

Table of n, a(n) for n=0..19.


EXAMPLE

a(3) = 161 is the numerator of 1.61 = 161/100.
a(4) = 809 is the numerator of 1.618 = 1618/1000 = 809/500.


PROG

(PARI) a(n, c=sqrt(5)/2+.5)=numerator(c\.1^n/10^n) \\ M. F. Hasler, Sep 21 2011


CROSSREFS

Cf. A001622, A011551.
Cf. A195603 (analog for Pi), A195604 (for e), A195606 (for gamma).
Sequence in context: A219265 A300466 A184605 * A064755 A140337 A245322
Adjacent sequences: A195604 A195605 A195606 * A195608 A195609 A195610


KEYWORD

nonn,base


AUTHOR

M. F. Hasler, following a suggestion by Eric Angelini, Sep 21 2011


STATUS

approved



