login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194268
a(n) = 8*n^2 + 7*n + 1.
5
1, 16, 47, 94, 157, 236, 331, 442, 569, 712, 871, 1046, 1237, 1444, 1667, 1906, 2161, 2432, 2719, 3022, 3341, 3676, 4027, 4394, 4777, 5176, 5591, 6022, 6469, 6932, 7411, 7906, 8417, 8944, 9487, 10046, 10621, 11212, 11819, 12442, 13081, 13736, 14407, 15094, 15797
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 16,..., in the square spiral whose vertices are the triangular numbers A000217.
FORMULA
a(0)=1, a(1)=16, a(2)=47, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Apr 06 2014
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: (1 + 13*x + 2*x^2)/(1 - x)^3.
E.g.f.: (1 + 15*x + 8*x^2)*exp(x). (End)
MAPLE
A194268:=n->8*n^2+7*n+1: seq(A194268(n), n=0..50); # Wesley Ivan Hurt, Jul 15 2014
MATHEMATICA
Table[8n^2+7n+1, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 16, 47}, 50] (* Harvey P. Dale, Apr 06 2014 *)
PROG
(Magma) [8*n^2 +7*n + 1: n in [0..50]]; // Vincenzo Librandi, Sep 07 2011
(PARI) a(n)=8*n^2+7*n+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 05 2011
STATUS
approved