login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192237
a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,0,0,1.
5
0, 0, 0, 1, 2, 6, 18, 51, 148, 428, 1236, 3573, 10326, 29842, 86246, 249255, 720360, 2081880, 6016744, 17388713, 50254314, 145237662, 419744634, 1213084507, 3505879292, 10132179204, 29282541372, 84628115229, 244579792318, 706848718634, 2042830710990, 5903890328655, 17062559724240, 49311712809136, 142513495013072
OFFSET
0,5
FORMULA
G.f.: x^3 / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 12 2012 and Sep 06 2018
MATHEMATICA
q[x_]:= x + 1;
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, 1, 40}];
Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192235 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192236 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A192237 *)
(* by Peter J. C. Moses, Jun 25 2011 *)
LinearRecurrence[{2, 2, 2, -1}, {0, 0, 0, 1}, 40] (* Vincenzo Librandi, Sep 06 2018 *)
PROG
(PARI) concat(vector(3), Vec(x^3/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ Colin Barker, Sep 06 2018
(Magma) I:=[0, 0, 0, 1]; [n le 4 select I[n] else 2*(Self(n-1)+Self(n-2) +Self(n-3))-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Sep 06 2018
(Sage) (x^3/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
(GAP) a:=[0, 0, 0, 1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 30 2019
CROSSREFS
With a different offset, equals (A192236)/2.
Other sequences with this recurrence but different initial conditions: A192234, A317973, A317974, A317975, A317976.
Sequence in context: A196593 A248735 A219136 * A034525 A018249 A374186
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 26 2011
EXTENSIONS
Entry revised (with new offset and initial terms) by N. J. A. Sloane, Sep 03 2018
STATUS
approved