login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192236
Coefficient of x in the reduction of the n-th 2nd-kind Chebyshev polynomial by x^2 -> x+1.
4
2, 4, 12, 36, 102, 296, 856, 2472, 7146, 20652, 59684, 172492, 498510, 1440720, 4163760, 12033488, 34777426, 100508628, 290475324, 839489268, 2426169014, 7011758584, 20264358408, 58565082744, 169256230458, 489159584636, 1413697437268
OFFSET
1,1
COMMENTS
See A192232.
FORMULA
a(n) = 2*A192237(n+2).
G.f.: 2*x/(1-2*x-2*x^2-2*x^3+x^4). - Colin Barker, Sep 12 2012
MATHEMATICA
q[x_]:= x + 1; m:=40;
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, m}];
Table[Coefficient[Part[t, n], x, 0], {n, m}] (* A192235 *)
Table[Coefficient[Part[t, n], x, 1], {n, m}] (* A192236 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, m}] (* A192237 *)
(* Peter J. C. Moses, Jun 25 2011 *)
LinearRecurrence[{2, 2, 2, -1}, {2, 4, 12, 36}, 40] (* G. C. Greubel, Jul 30 2019 *)
PROG
(PARI) m=40; v=concat([2, 4, 12, 36], vector(m-4)); for(n=5, m, v[n] = 2*v[n-1]+2*v[n-2]+2*v[n-3]-v[n-4]); v \\ G. C. Greubel, Jul 30 2019
(Magma) I:=[2, 4, 12, 36]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 30 2019
(Sage)
def a(n):
if (n==0): return 2
elif (1 <= n <= 3): return 4*3^(n-1)
else: return 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4)
[a(n) for n in (0..40)] # G. C. Greubel, Jul 30 2019
(GAP) a:=[2, 4, 12, 36];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+ 2*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jul 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 26 2011
STATUS
approved