login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192234
a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,1,0,1.
5
0, 1, 0, 1, 4, 9, 28, 81, 232, 673, 1944, 5617, 16236, 46921, 135604, 391905, 1132624, 3273345, 9460144, 27340321, 79014996, 228357577, 659965644, 1907336113, 5512303672, 15930853281, 46041020488, 133061018769, 384553481404, 1111380188041
OFFSET
0,5
COMMENTS
With a different offset, constant term of the reduction of the n-th 1st-kind Chebyshev polynomial by x^2->x+1. See A192232.
LINKS
H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
FORMULA
G.f.: x*(1 - 2*x - x^2) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Feb 09 2012 and Sep 09 2018
MATHEMATICA
q[x_]:= x + 1;
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevT[n, x]]]], {n, 1, 40}];
Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192234 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A071101 *)
(* Peter J. C. Moses, Jun 25 2011 *)
PROG
(PARI) a(n)=my(t=polchebyshev(n)); while(poldegree(t)>1, t=substpol(t, x^2, x+1)); subst(t, x, 0) \\ Charles R Greathouse IV, Feb 09 2012
(PARI) concat(0, Vec(x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ Colin Barker, Sep 09 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019
(Sage) (x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019
(GAP) a:=[0, 1, 0, 1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 29 2019
CROSSREFS
Cf. A192232.
Sequence in context: A000368 A232765 A094255 * A069563 A352878 A276984
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 26 2011
EXTENSIONS
Entry revised (with new offset and initial terms) by N. J. A. Sloane, Sep 03 2018
STATUS
approved