The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071101 Expansion of (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x. 8
 5, 16, 45, 130, 377, 1088, 3145, 9090, 26269, 75920, 219413, 634114, 1832625, 5296384, 15306833, 44237570, 127848949, 369490320, 1067846845, 3086134658, 8919094697, 25776662080, 74495936025, 215297250946, 622220603405, 1798250918672, 5197041610021 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Number of tilings of the 2-mod-4 pillow of order n is a perfect square times a(n). [Propp, 1999, p. 272] REFERENCES J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12). LINKS A.H.M. Smeets, Table of n, a(n) for n = 0..2169 J. Propp, Updated article J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1). FORMULA G.f.: (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). a(-n) = a(-6 + n). a(-1) = 2, a(-2) = 1, a(-3) = 0. a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4). - Michael Somos, Dec 15 2011 A112835(2*n + 3) = a(n). Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018 EXAMPLE G.f. = 5 + 16*x + 45*x^2 + 130*x^3 + 377*x^4 + 1088*x^5 + 3145*x^6 + 9090*x^7 + ... MAPLE seq(coeff(series((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018 MATHEMATICA Table[Abs[Fibonacci[n+3, 1+I]]^2, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 05 2016 *) CoefficientList[Series[(5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4), {x, 0, 30}], x] (* Stefano Spezia, Sep 12 2018 *) PROG (PARI) {a(n) = my(m = abs(n+3)); polcoeff( (x - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)};  /* Michael Somos, Dec 15 2011 */ (PARI) x='x+O('x^33); Vec((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018 (Python) from math import log a0, a1, a2, a3, n = 130, 45, 16, 5, 3 print(0, a3) print(1, a2) print(2, a1) print(3, a0) while log(a0)/log(10) < 1000:     a0, a1, a2, a3, n = 2*(a0+a1+a2)-a3, a0, a1, a2, n+1     print(n, a0) # A.H.M. Smeets, Sep 12 2018 (GAP) a:=[5, 16, 45, 130];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2] +2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019 (Sage) ((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019 CROSSREFS Cf. A112835, A138573. Sequence in context: A099327 A004146 A275126 * A110580 A055552 A086750 Adjacent sequences:  A071098 A071099 A071100 * A071102 A071103 A071104 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 28 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 5 18:25 EDT 2021. Contains 343572 sequences. (Running on oeis4.)