login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071100
Expansion of (5 + 3*x + x^2 - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x.
4
5, 13, 37, 109, 313, 905, 2617, 7561, 21853, 63157, 182525, 527509, 1524529, 4405969, 12733489, 36800465, 106355317, 307372573, 888323221, 2567301757, 7419639785, 21443156953, 61971873769, 179102039257, 517614500173, 1495933669445, 4323328543981
OFFSET
0,1
COMMENTS
Number of tilings of the 0-mod-4 pillow of order n is a perfect square times a(n). [Propp, 1999, p. 271]
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).
LINKS
J. Propp, Updated article
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
FORMULA
G.f.: (5 + 3*x + x^2 -x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
a(-n) = a(-5 + n). a(-1) = a(-2) = 1. a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4). - Michael Somos, Dec 15 2011
A112835(2*n + 2) = a(n).
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018
EXAMPLE
G.f. = 5 + 13*x + 37*x^2 + 109*x^3 + 313*x^4 + 905*x^5 + 2617*x^6 + 7561*x^7 + ...
MAPLE
seq(coeff(series((5+3*x+x^2-x^3)/(1-2*x-2*x^2-2*x^3+x^4), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
MATHEMATICA
CoefficientList[Series[(5 + 3*x + x^2 -x^3)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4), {x, 0, 50}], x] (* Stefano Spezia, Sep 12 2018 *)
LinearRecurrence[{2, 2, 2, -1}, {5, 13, 37, 109}, 30] (* Harvey P. Dale, Sep 03 2021 *)
PROG
(PARI) {a(n) = my(m = n+2); if( m < 0, m = -1 - m); polcoeff( (1 - x + x^2 - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)}; /* Michael Somos, Dec 15 2011 */
(PARI) x='x+O('x^33); Vec((5+3*x+x^2-x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018
(GAP) a:=[5, 13, 37, 109];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
CROSSREFS
Cf. A112835.
Sequence in context: A193642 A220709 A182312 * A199108 A125734 A146925
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 28 2002
STATUS
approved