The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182312 Primes of the form a^2 + b^2 such that both a^2 + b^2 - a*b and a^2 + b^2 + a*b are prime. 2
 5, 13, 37, 109, 193, 421, 457, 541, 613, 709, 757, 1033, 1117, 1201, 1549, 1597, 1621, 1789, 2137, 2293, 2377, 2437, 2797, 3061, 3109, 3313, 3361, 3469, 4153, 4621, 4657, 4729, 5077, 5233, 5569, 5653, 6421, 6469, 6637, 6997, 7417, 7561, 7681, 7753, 8101, 8689 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA a(n) == 1 (mod 4). - Thomas Ordowski, Mar 13 2018 EXAMPLE The prime 13 = 2^2 + 3^2 is a term, since 13 - 2*3 = 7 is prime and 13 + 2*3 = 19 is prime. MATHEMATICA prsQ[{a_, b_}]:=Module[{c=a^2+b^2, d=a*b}, And@@PrimeQ[c+{0, d, -d}]]; Sort[#[[1]]^2+#[[2]]^2&/@Select[Subsets[Range[100], {2}], prsQ]] (* Harvey P. Dale, Apr 27 2014 *) PROG (PARI) list(lim)=my(v=List(), t); for(a=1, sqrt(lim), forstep(b=1+a%2, min(a, sqrt(lim-a^2)), 2, if(isprime(t=a^2+b^2) && isprime(t-a*b) && isprime(t+a*b), listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 25 2012 CROSSREFS Subsequence of A002313. Cf. A007645. Sequence in context: A298417 A193642 A220709 * A071100 A199108 A125734 Adjacent sequences:  A182309 A182310 A182311 * A182313 A182314 A182315 KEYWORD nonn AUTHOR Thomas Ordowski, Apr 24 2012 EXTENSIONS a(6)-a(46) from Charles R Greathouse IV, Apr 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 19:40 EDT 2020. Contains 334748 sequences. (Running on oeis4.)