login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182314
G.f. satisfies: A(x) = 1 + x*A(A(x)^2 - 1).
0
1, 1, 2, 13, 174, 4232, 182382, 14175046, 2045373678, 562261694364, 299983681820740, 314433086095052371, 652379184283729238186, 2691298717301069744228618, 22133007749002207321732828222, 363389633981231330655355989037627, 11920985732676951145747564507103687806
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 174*x^4 + 4232*x^5 + 182382*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 30*x^3 + 378*x^4 + 8864*x^5 + 374093*x^6 +...
A(A(x)^2 - 1) = 1 + 2*x + 13*x^2 + 174*x^3 + 4232*x^4 + 182382*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*subst(A, x, A^2-1+x*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A088316 A006905 A119400 * A268988 A183606 A366194
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 24 2012
STATUS
approved