|
|
A125734
|
|
Primes of the form 4*3^k + 1.
|
|
1
|
|
|
5, 13, 37, 109, 2917, 19131877, 57395629, 16210220612075905069, 3187367866510497232065375864429355521950801431840733951694899540869109890815626195932616388528013, 254244997489062154119688681828370010268347235132197783249391539881181660045297550875174703528321187968562717038040968333
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Venkataraman showed that, for every p of this form, 3p is a perfect totient number (cf. A082897).
|
|
REFERENCES
|
Venkataraman, T. (1975). "Perfect totient number". The Mathematics Student 43: 178. MR0447089.
|
|
LINKS
|
|
|
FORMULA
|
4*3^n + 1 where n belongs to A005537.
|
|
EXAMPLE
|
37 = 4*3^2 + 1 is a prime of this form. 973 = 4*3^5 + 1 = 7*139 is not a prime, so is not included in this sequence.
|
|
MATHEMATICA
|
Do[p = 4*3^i + 1; If[PrimeQ@p, Print@p], {i, 0, 300}] (* Robert G. Wilson v, Feb 20 2007 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|