login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,1,0,1.
5

%I #26 Sep 08 2022 08:45:57

%S 0,1,0,1,4,9,28,81,232,673,1944,5617,16236,46921,135604,391905,

%T 1132624,3273345,9460144,27340321,79014996,228357577,659965644,

%U 1907336113,5512303672,15930853281,46041020488,133061018769,384553481404,1111380188041

%N a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,1,0,1.

%C With a different offset, constant term of the reduction of the n-th 1st-kind Chebyshev polynomial by x^2->x+1. See A192232.

%H Colin Barker, <a href="/A192234/b192234.txt">Table of n, a(n) for n = 0..1000</a>

%H H. S. M. Coxeter, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002022109">Loxodromic sequences of tangent spheres</a>, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,2,-1).

%F G.f.: x*(1 - 2*x - x^2) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - _Colin Barker_, Feb 09 2012 and Sep 09 2018

%t q[x_]:= x + 1;

%t reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};

%t t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevT[n, x]]]], {n, 1, 40}];

%t Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192234 *)

%t Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A071101 *)

%t (* _Peter J. C. Moses_, Jun 25 2011 *)

%o (PARI) a(n)=my(t=polchebyshev(n));while(poldegree(t)>1, t=substpol(t, x^2,x+1));subst(t,x,0) \\ _Charles R Greathouse IV_, Feb 09 2012

%o (PARI) concat(0, Vec(x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ _Colin Barker_, Sep 09 2018

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) )); // _G. C. Greubel_, Jul 29 2019

%o (Sage) (x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Jul 29 2019

%o (GAP) a:=[0,1,0,1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # _G. C. Greubel_, Jul 29 2019

%Y Cf. A192232.

%K nonn,easy

%O 0,5

%A _Clark Kimberling_, Jun 26 2011

%E Entry revised (with new offset and initial terms) by _N. J. A. Sloane_, Sep 03 2018