login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196593
Number of fixed tree-like convex polyominoes.
1
1, 2, 6, 18, 51, 134, 328, 758, 1677, 3594, 7530, 15530, 31687, 64190, 129420, 260142, 521889, 1045730, 2093806, 4190402, 8384091, 16772022, 33548496, 67102118, 134210101, 268426874, 536861298, 1073731098, 2147471727, 4294954094, 8589920020, 17179853150
OFFSET
1,2
COMMENTS
In a 1-1 mapping with permutations that avoid the patterns (1423, 4213, 2314, 2431, 2413, <3142,{2},{2}>) (the fourth pattern is bivincular).
LINKS
Gadi Aleksandrowicz, Andrei Asinowski and Gill Barequet, A polyominoes-permutations injection and tree-like convex polyominoes, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, Pages 503-520
A. Goupil, H. Cloutier, and F. Nouboud, Enumeration of inscribed polyominos, FPSCA 2010 (San Francisco) DMTS proc. AN 2010, 737-748, eq. (10)
FORMULA
G.f.: (x*(1-4*x+8*x^2-6*x^3+4*x^4))/((1-x)^4*(1-2*x)).
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
a(n) = 2^(n+2) - (n^3-n^2+10*n+4)/2.
MATHEMATICA
LinearRecurrence[{6, -14, 16, -9, 2}, {1, 2, 6, 18, 51}, 50] (* Harvey P. Dale, Oct 16 2011 *)
CROSSREFS
Cf. A001168 (fixed polyominoes), A066158 (fixed tree polyominoes), A067675 (fixed convex polyominoes).
Sequence in context: A309087 A199770 A204322 * A248735 A219136 A192237
KEYWORD
nonn,easy
AUTHOR
Gill Barequet, Oct 04 2011
STATUS
approved