The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192240 Constant term in the reduction of the polynomial (x+3)^n by x^2 -> x+1. 3
 1, 3, 10, 37, 149, 636, 2813, 12695, 57922, 265809, 1223521, 5640748, 26026505, 120137307, 554669594, 2561176781, 11826871933, 54615158940, 252210521317, 1164706900879, 5378632571666, 24838652091993, 114705606355625, 529714071477452 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See A192232. LINKS Robert Israel, Table of n, a(n) for n = 0..1498 FORMULA Empirical g.f. and recurrence: (1-4*x)/(1-7*x+11*x^2). a(n) = 7*a(n-1) - 11*a(n-2). - Colin Barker, Feb 09 2012 Proof of recurrence: if r(n) == (x+3)^n mod (x^2-x-1), then r(n+j) == (x+1)^(n+j) mod (x^2 - x - 1). Now r(n+2) - 7*r(n+1) + 11*r(n) == ((x+3)^2 - 7*(x+3) + 11)*r(n) == 0 mod (x^2-x-1) since ((x+3)^2 - 7*(x+3) + 11 = x^2 - x - 1. - Robert Israel, Mar 14 2023 a(n) = Sum_{i=0..n} (-1)^i*Fibonacci(i+1)*binomial(n,i)*4^(n-i) (conjecture). - Rigoberto Florez, Mar 25 2020 MAPLE seq(eval(rem((x+3)^n, x^2-x-1, x), x=0), n=0..50); # Robert Israel, Mar 14 2023 MATHEMATICA q[x_] := x + 1; p[n_, x_] := (x + 3)^n; reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[ Last[Most[ FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]; Table[Coefficient[Part[t, n], x, 0], {n, 30}] (* A192240 *) Table[Coefficient[Part[t, n], x, 1], {n, 30}] (* A099453 *) (* Peter J. C. Moses, Jun 26 2011 *) CROSSREFS Cf. A192232. Sequence in context: A199874 A151058 A044048 * A231894 A086444 A064613 Adjacent sequences: A192237 A192238 A192239 * A192241 A192242 A192243 KEYWORD nonn AUTHOR Clark Kimberling, Jun 26 2011 EXTENSIONS Offset corrected by Robert Israel, Mar 14 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 19:52 EDT 2024. Contains 373432 sequences. (Running on oeis4.)