login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188145
Solutions of the equation n" - n' - n = 0, where n' and n" are the first and second arithmetic derivatives (see A003415).
1
0, 20, 135, 164, 1107, 15625, 43692, 128125, 188228, 294921, 1270539, 4117715, 33765263, 34134375, 147053125, 8995560189, 19348535652, 38753462951
OFFSET
1,2
COMMENTS
Solutions of the similar equation n”-n’+n=0 are 30, 858, 1722, etc., apparently Giuga numbers whose derivative is a prime number. In fact the equation can be rewritten as n'=n+n" and if n"=1 it is the conjecture in A007850.
a(16) > 2*10^9. - Donovan Johnson, Apr 30 2011
a(19) > 10^11. - Giovanni Resta, Jun 04 2016
EXAMPLE
n=20, n’=24, n”=44 -> 44-24-20=0; n=135, n’=162, n”=297 -> 297-162-135=0
MAPLE
readlib(ifactors):
Der:= proc(n)
local a, b, i, p, pfs;
for i from 0 to n do
if i<=1 then a:=0;
else pfs:=ifactors(i)[2]; a:=i*add(op(2, p)/op(1, p), p=pfs) ;
fi;
if a<=1 then b:=0;
else pfs:=ifactors(a)[2]; b:=a*add(op(2, p)/op(1, p), p=pfs) ;
fi;
if b-a=i then lprint(i, a, b); fi;
od
end:
Der(10000000);
PROG
(Haskell)
import Data.List (zipWith3, elemIndices)
a188145 n = a188145_list !! (n-1)
a188145_list = elemIndices 0 $ zipWith3 (\x y z -> x - y - z)
(map a003415 a003415_list) a003415_list [0..]
-- Reinhard Zumkeller, May 10 2011
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Mar 22 2011
EXTENSIONS
a(13)-a(15) from Donovan Johnson, Apr 30 2011
Corrected a(9) and a(16)-a(18) from Giovanni Resta, Jun 04 2016
STATUS
approved