login
A085284
a(n) = C(n+3,3)*n^3/4.
1
0, 1, 20, 135, 560, 1750, 4536, 10290, 21120, 40095, 71500, 121121, 196560, 307580, 466480, 688500, 992256, 1400205, 1939140, 2640715, 3542000, 4686066, 6122600, 7908550, 10108800, 12796875, 16055676, 19978245, 24668560, 30242360, 36828000, 44567336, 53616640
OFFSET
0,3
FORMULA
a(n) = n^3(n+1)(n+2)(n+3)/4!.
a(n) = C(n+1, n)^2 * C(n+4, n). - Zerinvary Lajos, Jul 29 2005
From Amiram Eldar, Feb 13 2023: (Start)
Sum_{n>=1} 1/a(n) = 449/54 - 11*Pi^2/9 + 4*zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 224*log(2)/9 - 749/54 - 11*Pi^2/18 + 3*zeta(3). (End)
MATHEMATICA
Table[(Binomial[n+3, 3]*n^3)/4, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 20, 135, 560, 1750, 4536}, 40] (* Harvey P. Dale, Jan 08 2016 *)
CROSSREFS
Cf. A002417.
Sequence in context: A356272 A188145 A168178 * A105573 A144965 A262140
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 26 2003
STATUS
approved