login
A374709
a(n) = n*(6*n^4 + 8*n^3 + 1 - (-1)^n)/16.
1
0, 1, 20, 132, 512, 1485, 3564, 7504, 14336, 25425, 42500, 67716, 103680, 153517, 220892, 310080, 425984, 574209, 761076, 993700, 1280000, 1628781, 2049740, 2553552, 3151872, 3857425, 4684004, 5646564, 6761216, 8045325, 9517500, 11197696, 13107200, 15268737, 17706452
OFFSET
0,3
FORMULA
O.g.f.: x*(1 + 16*x + 56*x^2 + 68*x^3 + 35*x^4 + 4*x^5)/((1 - x)^6*(1 + x)^2).
a(n) = 4*a(n-1) - 4*a(n-2) - 4*a(n-3) + 10*a(n-4) - 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8) for n > 7.
E.g.f.: x*((8 + 73*x + 99*x^2 + 34*x^3 + 3*x^4)*cosh(x) + (7 + 73*x + 99*x^2 + 34*x^3 + 3*x^4)*sinh(x))/8.
a(2*n) = 4*A229147(n) = 4*A000583(n)*A016789(n).
MATHEMATICA
LinearRecurrence[{4, -4, -4, 10, -4, -4, 4, -1}, {0, 1, 20, 132, 512, 1485, 3564, 7504}, 35]
CROSSREFS
Row sums of A374708.
Sequence in context: A005551 A006417 A156392 * A219574 A356272 A188145
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Jul 17 2024
STATUS
approved