login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374711
Number of distinct sums i^3 + j^3 + k^3 + l^3 for 0<=i<=j<=k<=l<=n.
4
1, 5, 15, 35, 69, 123, 192, 297, 450, 636, 874, 1157, 1442, 1894, 2430, 3010, 3606, 4401, 5320, 6361, 7571, 8864, 10277, 11997, 13621, 15692, 17922, 20022, 22742, 25742, 28625, 32088, 35440, 39238, 42917, 47598, 51955, 57120, 62743, 68134, 73947, 80549, 87193, 94657, 102397, 110221, 118738, 127921, 135988
OFFSET
0,2
PROG
(PARI) a(n) = my(v=vector(4*n^3+1)); for(i=0, n, for(j=i, n, for(k=j, n, for(l=k, n, v[i^3+j^3+k^3+l^3+1]+=1)))); sum(i=1, #v, v[i]>0);
(Python)
def A374711(n): return len({i**3+j**3+k**3+l**3 for i in range(n+1) for j in range(i, n+1) for k in range(j, n+1) for l in range(k, n+1)}) # Chai Wah Wu, Jul 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 17 2024
STATUS
approved