login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069983
Number of 5-gonal compositions of n into positive parts.
2
0, 0, 0, 0, 0, 1, 5, 15, 35, 65, 121, 185, 305, 420, 640, 826, 1190, 1470, 2030, 2430, 3246, 3795, 4935, 5665, 7205, 8151, 10175, 11375, 13975, 15470, 18746, 20580, 24640, 26860, 31820, 34476, 40460, 43605, 50745, 54435, 62871, 67165
OFFSET
0,7
LINKS
G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 17.
G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis: The Omega Package, Europ. J. Combin., 22 (2001), 887-904.
FORMULA
G.f.: q^5/(1-q)^5 - 5*q^9/((1-q)^5*(1+q)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9. - Colin Barker, Sep 18 2019
MATHEMATICA
Table[Piecewise[{
{Binomial[k - 1, k - 5] - 5*Binomial[(k - 1)/2, (k - 9)/2], Mod[k, 2] == 1},
{Binomial[k - 1, k - 5] - 5*Binomial[(k - 2)/2, (k - 10)/2], Mod[k, 2] == 0}
}], {k, 1, 20}] (* Mo Li, Sep 18 2019 *)
PROG
(PARI) concat([0, 0, 0, 0, 0], Vec(x^5*(1 + 4*x + 6*x^2 + 4*x^3 - 4*x^4) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Sep 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 06 2002
STATUS
approved