OFFSET
0,7
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 17.
G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis: The Omega Package, Europ. J. Combin., 22 (2001), 887-904.
Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
FORMULA
G.f.: q^5/(1-q)^5 - 5*q^9/((1-q)^5*(1+q)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9. - Colin Barker, Sep 18 2019
MATHEMATICA
Table[Piecewise[{
{Binomial[k - 1, k - 5] - 5*Binomial[(k - 1)/2, (k - 9)/2], Mod[k, 2] == 1},
{Binomial[k - 1, k - 5] - 5*Binomial[(k - 2)/2, (k - 10)/2], Mod[k, 2] == 0}
}], {k, 1, 20}] (* Mo Li, Sep 18 2019 *)
PROG
(PARI) concat([0, 0, 0, 0, 0], Vec(x^5*(1 + 4*x + 6*x^2 + 4*x^3 - 4*x^4) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Sep 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 06 2002
STATUS
approved