login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069984
1123+21460n.
1
1123, 22583, 44043, 65503, 86963, 108423, 129883, 151343, 172803, 194263, 215723, 237183, 258643, 280103, 301563, 323023, 344483, 365943, 387403, 408863, 430323, 451783, 473243, 494703, 516163, 537623, 559083, 580543, 602003, 623463
OFFSET
0,1
COMMENTS
Arises in an important Ramanujan formula for Pi: 4/Pi=1123/882-22583/882^3*(1/2*(1*3)/4^2)+...
REFERENCES
L. Berggren, J. Borwein and P. Borwein, "Pi: A source book", Springer, second edition, p. 328.
S. Ramanujan, "Modular equations and approximations to Pi", Quart. J. Pure Appl. Math., v. 45, 1914, p. 350-372.
FORMULA
a(0)=1123, a(1)=22583, a(n)=2*a(n-1)-a(n-2). - Harvey P. Dale, Feb 04 2015
MATHEMATICA
21460*Range[0, 30]+1123 (* or *) LinearRecurrence[{2, -1}, {1123, 22583}, 30] (* Harvey P. Dale, Feb 04 2015 *)
CROSSREFS
Sequence in context: A200072 A261264 A125840 * A358420 A104285 A260898
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved