Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 13 2015 21:33:15
%S 1123,22583,44043,65503,86963,108423,129883,151343,172803,194263,
%T 215723,237183,258643,280103,301563,323023,344483,365943,387403,
%U 408863,430323,451783,473243,494703,516163,537623,559083,580543,602003,623463
%N 1123+21460n.
%C Arises in an important Ramanujan formula for Pi: 4/Pi=1123/882-22583/882^3*(1/2*(1*3)/4^2)+...
%D L. Berggren, J. Borwein and P. Borwein, "Pi: A source book", Springer, second edition, p. 328.
%D S. Ramanujan, "Modular equations and approximations to Pi", Quart. J. Pure Appl. Math., v. 45, 1914, p. 350-372.
%H Harvey P. Dale, <a href="/A069984/b069984.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(0)=1123, a(1)=22583, a(n)=2*a(n-1)-a(n-2). - _Harvey P. Dale_, Feb 04 2015
%t 21460*Range[0,30]+1123 (* or *) LinearRecurrence[{2,-1},{1123,22583},30] (* _Harvey P. Dale_, Feb 04 2015 *)
%K easy,nonn
%O 0,1
%A _Benoit Cloitre_, May 01 2002