login
A125840
Two-sided multiplicative pointer primes.
2
1123, 21911, 3116111, 11413111, 12111331, 14111311, 316111111, 1111131821, 11112119111, 11161211111, 111161111311, 111211231111, 1111112111191, 2111191111111, 11131211113111, 21111121126111, 31111127111111, 111211151611111, 111211222111123, 121132111712111
OFFSET
1,1
COMMENTS
Following the definition of multiplicative pointer primes (A089823), I call a prime p a two-sided multiplicative pointer prime if previous_prime(p)=p-P and next_prime(p)=p+P where P is the product of the digits of p.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..59 (terms < 10^19)
Carlos Rivera and Joseph L. Pe, Pointer primes.
EXAMPLE
11112119111 is in the sequence because previous_prime(11112119111)
= 11112119111 - 1*1*1*1*2*1*1*9*1*1*1 and next_prime(11112119111)
= 11112119111 + 1*1*1*1*2*1*1*9*1*1*1.
MATHEMATICA
Do[p=Prime[m]; P=Apply[Times, IntegerDigits[p]]; If[Prime[m-1]== p-P&&Prime[m+1]==p+P, Print[p]], {m, 2, 140000000}]
CROSSREFS
KEYWORD
hard,base,nonn
AUTHOR
Farideh Firoozbakht, Feb 02 2007
EXTENSIONS
a(9)-a(20) from Donovan Johnson, Oct 21 2013
STATUS
approved