login
A188146
Three interleaved 1st-order polynomials: a(3*n) = 1+4*n, a(1+3*n) = 3+4*n, a(2+3*n) = 1+n.
1
1, 3, 1, 5, 7, 2, 9, 11, 3, 13, 15, 4, 17, 19, 5, 21, 23, 6, 25, 27, 7, 29, 31, 8, 33, 35, 9, 37, 39, 10, 41, 43, 11, 45, 47, 12, 49, 51, 13, 53, 55, 14, 57, 59, 15, 61, 63, 16, 65, 67, 17, 69, 71, 18, 73, 75, 19, 77, 79, 20, 81, 83, 21, 85, 87, 22, 89, 91, 23, 93, 95, 24, 97, 99, 25, 101, 103, 26, 105, 107, 27, 109, 111
OFFSET
0,2
FORMULA
a(n)= 2*a(n-3) - a(n-6).
a(3*n) + a(1+3*n) + a(2+3*n) = 5+9*n.
a(n) = n + 1 - (-1)^n*A099254(n-1). - R. J. Mathar, Mar 31 2011
G.f.: ( 1+3*x+x^2+3*x^3+x^4 ) / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Mar 31 2011
a(n) = (9*(n+1) + sqrt(3)*(3*n+4)*sin((2*Pi*n)/3) + 3*n*cos((2*Pi*n)/3)) / 9. - Colin Barker, Mar 06 2017
MATHEMATICA
CoefficientList[Series[(1+3x+x^2+3x^3+x^4)/((x-1)^2(1+x+x^2)^2), {x, 0, 85}], x] (* Harvey P. Dale, Apr 09 2011 *)
PROG
(PARI) Vec((1+3*x+x^2+3*x^3+x^4 ) / ((x-1)^2*(1+x+x^2)^2) + O(x^100)) \\ Colin Barker, Mar 06 2017
CROSSREFS
Sequence in context: A265707 A360965 A336301 * A001607 A167433 A077020
KEYWORD
nonn,less,easy
AUTHOR
Paul Curtz, Mar 22 2011
STATUS
approved