login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165558
Integers that are half of their arithmetic derivatives.
4
0, 16, 108, 729, 12500, 84375, 3294172, 9765625, 22235661, 2573571875, 678223072849, 1141246682444, 7703415106497, 891598970659375, 1211500426369012, 8177627877990831, 234966429149994773, 946484708100790625
OFFSET
1,2
COMMENTS
All integers of the form p^p*q^q, with q and p two distinct primes, are in the sequence. [R. J. Mathar, Sep 26 2009]
6*10^8 < a(10) <= 2573571875. a(11) <= 678223072849. [Donovan Johnson, Nov 03 2010]
By a result of Ufnarovski and Ahlander, an integer is in this sequence if and only if it has the form p^(2p) or p^p*q^q, with p and q distinct primes. See comments from A072873. [Nathaniel Johnston, Nov 22 2010]
FORMULA
{n: A003415(n) = 2*n}.
EXAMPLE
For k =84375 = 3^3*5^5, so A003415(k)/2 = 84375*(3/3+5/5)/2 = 84375 = k, which adds k=84375 to the sequence.
MAPLE
with(numtheory);
P:=proc(n)
local a, i, p, pfs;
for i from 1 to n do
pfs:=ifactors(i)[2]; a:=i*add(op(2, p)/op(1, p), p=pfs); if a=2*i then print(i); fi; od;
end:
P(100000000);
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Join[{0}, Reap[Do[p = Prime[n]; ip = p^(2*p); If[ip == d[ip]/2, Sow[ip]]; Do[q = Prime[k]; iq = p^p*q^q; If[iq == d[iq]/2, Sow[iq]], {k, n+1, 6}], {n, 1, 5}]][[2, 1]] // Union][[1 ;; 18]] (* Jean-François Alcover, Apr 22 2015, after Nathaniel Johnston *)
CROSSREFS
Sequence in context: A056001 A163725 A269188 * A337391 A250425 A238171
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entries checked by R. J. Mathar, Sep 26 2009
a(7)-a(9) from Donovan Johnson, Nov 03 2010
a(10)-a(18) and general form from Nathaniel Johnston, Nov 22 2010
STATUS
approved